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Abstract
We consider the well-known Jaynes–Cummings model and ask if it can display
randomness. As a solvable Hamiltonian system, it does not display chaotic
behaviour in the ordinary sense. Here, however, we look at the distribution of
values taken up during the total time evolution. This evolution is determined
by the eigenvalues distributed as the square roots of integers and leads to a
seemingly erratic behaviour. That this may display a random Gaussian value
distribution is suggested by an exactly provable result by Kac. In order to
reach our conclusion we use the Kac model to develop tests for the emergence
of a Gaussian. Even if the consequent double limits are difficult to evaluate
numerically, we find definite indications that the Jaynes–Cummings case also
produces a randomness in its value distributions. Numerical methods do not
establish such a result beyond doubt, but our conclusions are definite enough
to suggest strongly an unexpected randomness emerging in a dynamic time
evolution.

PACS numbers: 42.50.Ct, 42.50.Pq, 03.65.−w

1. Introduction

The Jaynes–Cummings model has become the paradigmatic model for interactions between
cavity eigenmodes and atoms. Many features of quantum optics have been elucidated within
this model; for a comprehensive review consult [1].

The model is exactly solvable as a quantum system with nontrivial time evolution, which
involves dephasing and subsequent recurrences. This behaviour derives from the square-root
dependence of the eigenvalues on the integer quantum numbers. It thus constitutes a proof of
the photon picture of quantized electromagnetic fields.

Except for the quasiperiodic recurrences, the time evolution seems rather random for
initial states significantly different from Fock states. However, we know that an integrable
quantum model cannot possibly display chaotic behaviour in the sense used for dynamical
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systems. The situation changes, however, if the discrete quantum numbers are replaced by a
semi-classically treated average field, see [2]. When the field variable is governed by its own
equation of motion, i.e. the Maxwell equations, the ensuing nonlinear system of equations
displays chaotic behaviour. This was discussed by Belobrov et al [3] and Milonni et al
[4]. They find that the system is chaotic in the standard sense, but this feature disappears if
the rotating wave approximation is applied. The reason is that this introduces an additional
conserved quantity, which effectively makes the system of equations two-dimensional; it is
known that such a system cannot display chaos. The constant of the motion is destroyed
if one adds dissipative terms to the equations, and then the ensuing system is equivalent to
the Lorenz system, which is known to be chaotic. This was noticed by Haken already in
[5].

In this paper we want to show that the time evolution of expectation values in the Jaynes–
Cummings model displays random behaviour in the following sense: take a given value of
some expectation of some physical quantity, the population on one of the two levels say. We
will ask how often this value occurs. That is, we choose to consider the relative weight of this
value during the total time evolution.

Regarded as a random variable, this is interpreted as a probability to observe such a value.
We claim that the values of the observable tend to occur randomly with a Gaussian distribution.
A related model based on incommensurate oscillation frequencies allows a mathematical proof
of this fact. This proof is found in [6], and we call this the Kac model. The square roots of
integers encountered in the spectrum of the Jaynes–Cummings model are not entirely of this
type, but our numerical work shows that there tends to be enough incommensurability to give
the random behaviour for practical purposes.

The phenomenon investigated occurs in the double limit of an infinite number of terms, i.e.
infinite number of frequencies, and an infinite time. Such double limits of oscillating functions
are difficult to handle numerically. Hence we find it convenient to have the mathematically
provable Kac model as a comparison. If we can determine the behaviour of the Jaynes–
Cummings model with the same confidence, we regard our conjecture as demonstrated. Full
mathematical certainty cannot be achieved numerically.

Finally, we want to point out that the probability distribution obtained cannot as such be
interpreted as a probability of values occurring at a fixed time t. The value at time t is always
fully determined by the dynamics. The consequence is that the evolution is not ergodic; the
distributions of values for all times cannot be assigned as a distribution at a given time. Only
if we regard the temporal origin of the evolution to be stochastic can we assign a probability
distribution to a given time. Consequently, only if the time origin is unknown, or governed by
some random quantity, can the ergodicity of the evolution be restored.

The proof of the mathematical theorem is indicated in section 2; a mathematically more
rigorous proof is found in Kac’s book [6]. We investigate numerically how the limits utilized
in the theorem emerge. In section 2, we also give an analysis for the Jaynes–Cummings model
which is suggestive of the result we seek to establish. Then, using the insight gained from
the Kac model we apply the result to the Jaynes–Cummings model. Within the numerical
limitations of our method, we find the stochastic behaviour established.

2. Formal considerations

2.1. Probability distributions

Let a function S(t) take real values under a variation of the parameter t ∈ [−∞,∞] . Then
the weight of the set where the function takes on the values between a and b is taken to be the
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integral

P = P {b � S(t) � a} ≡ lim
T →∞

1

2T

∫ T

−T

�(b, a; S(t)) dt, (1)

where the �-function is defined by

�(b, a; x) = 1 if b � x � a

= 0 elsewhere. (2)

It is easily seen that this function can be represented by the integral

�(b, a; x) = lim
ε→0

1

2π i

∫ ∞

−∞

[
exp(i(a − x)ξ) − exp(i(b − x)ξ)

ξ − iε

]
dξ

= θ(a − x) − θ(b − x), (3)

where θ(x) is the ordinary Heaviside function.
We further need to define the Fourier transform of the �-function

Gab(η) =
∫ ∞

−∞
�(b, a; x) exp(ixη) dx = eiaη − eibη

i (η − iε)
. (4)

These are the tools we need in the derivation below. The formal inverse transform gives

�(b, a; x) = 1

2π

∫ ∞

−∞
Gab(η) exp(−ixη) dη. (5)

2.2. The Kac model

Define a set of numbers {λ1, λ2, . . . , λn} such that the linear combination with integer
coefficients {nν}

n∑
ν=1

nνλν = 0 (6)

implies that nν = 0 for ∀ ν. The numbers are incommensurate. We next form the sums

Sn(t) =
√(

2

n

)
(cos λ1t + cos λ2t + · · · + cos λnt) . (7)

The normalization is chosen such that the time average gives

[Sn(t)]
2 = 2

n

∑
ν,µ

cos λνt cos λµt = 1. (8)

We now proceed to calculate the probability distribution of the values Sn(t) when the
number of terms n goes to infinity. According to (1), the probability for fixed n is given by

Pn = Pn {b � Sn(t) � a} ≡ lim
T →∞

1

2T

∫ T

−T

�(b, a; Sn(t)) dt, (9)

which we rewrite using the inverse transform of (5)

Pn = 1

2T

∫ T

−T

1

2π

∫ ∞

−∞
Gab(η) exp(−iηSn(t)) dη dt

= 1

2π

∫ ∞

−∞
dη Gab(η)

1

2T

∫ T

−T

dt

n∏
ν=1

exp

[
−iη

√(
2

n

)
cos λνt

]
. (10)

3
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We use for each value of ν the expansion

exp

[
−iη

√(
2

n

)
cos λνt

]
=

∞∑
kν=−∞

Jkν

(
η

√(
2

n

))
(−i)kν eikνλν t . (11)

Inside the product in equation (10), we now find the terms

lim
T →∞

1

2T

∫ T

−T

exp

[
i

n∑
ν=1

kνλνt

]
dt = δ

(
n∑

ν=1

kνλν

)
. (12)

According to our basic assumption (6), the only way the delta-function in equation (12) can
be non-zero is when the terms with kν = 0 are selected. Then the expression (10) becomes

Pn = 1

2π

∫ ∞

−∞
dη Gab(η)

[
J0

(
η

√(
2

n

))]n

= 1

2π

∫ ∞

−∞
dη Gab(η) exp

(
−1

2
η2

)
, (13)

because

lim
n→∞

[
J0

(
η

√(
2

n

))]n

= lim
n→∞

[
1 −

(
η2

2n

)]n

= exp

(
−1

2
η2

)
. (14)

From (13) and (4) we write

P∞ = 1

2π

∫ ∞

−∞
dη

∫ ∞

−∞
dx�(b, a; x) exp(ixη) exp

(
−1

2
η2

)

= 1√
2π

∫ ∞

−∞
�(b, a; x) exp

(
−1

2
x2

)
dx, (15)

because ∫ ∞

−∞
dη exp(ixη) exp

(
−1

2
η2

)
=

√
2π exp

(
−1

2
x2

)
. (16)

Using (3) we can write (15) as

P∞ = P {b � S∞(t) � a} = 1√
2π

∫ a

b

exp

(
−1

2
x2

)
dx. (17)

This proves that, in the limit of an infinite number of terms, the values of the function Sn(t)

have a Gaussian distribution with width equal to unity. The value of the width follows, of
course, from our normalization (8), but the essential assumption is the linear independence (6)
of our parameters {λν} .

2.3. The Jaynes–Cummings model

The Jaynes–Cummings model [1] is defined by the Hamiltonian

H = H1 + H2, (18)

where

H1 = h̄


(
b†b +

1

2
σ3

)

H2 = h̄

2
�
σ3 + h̄g(σ +b + σ−b†);

(19)

4
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here the operators {b, b†} obey Boson commutation relations and {σ +, σ−, σ3} are Pauli
operators. The detuning is defined as

�
 = ω − 
, (20)

where h̄ω is the level separation in the two-level system and 
 is the frequency of the Boson
field.

In presenting the exact solution, we set �
 = 0, which is expedient for our purpose. The
solution may be written as

|�(t)〉 =
∞∑

n=0

a0
n

[
c+

0 (cos ϕn+1|+, n〉 − i sin ϕn+1|−, n + 1〉)

+ c−
0 (cos ϕn|−, n〉 − i sin ϕn|+, n − 1〉)]. (21)

Here we have defined

ϕn ≡ √
ngt (22)

and in (21) we let |±〉 and |n〉 be the eigenstates of σ3 and b†b. The coefficients
{
a0

n

}
determine the initial distribution of the photons and the coefficients

{
c−

0 , c+
0

}
the initial value

of the two-level system. We next project on the two levels of the atomic system

〈+|�(t)〉 =
∞∑

n=0

a0
n

(
c+

0 cos ϕn+1|n〉 − ic−
0 sin ϕn|n − 1〉)

〈−|�(t)〉 =
∞∑

n=0

a0
n

(−ic+
0 sin ϕn+1|n + 1〉 + c−

0 cos ϕn|n〉).
(23)

We consider two cases

(a) c−
0 = 1, c+

0 = 0;
(b) c−

0 = 0, c+
0 = 1.

(24)

The corresponding probabilities of occupation on the levels are given by

P a
+ = |〈+|�a〉|2 =

∞∑
n=0

∣∣a0
n+1

∣∣2
sin2 ϕn+1 =

∞∑
n=0

∣∣a0
n

∣∣2
sin2 ϕn

P a
− = |〈−|�a〉|2 =

∞∑
n=0

∣∣a0
n

∣∣2
cos2 ϕn

P b
+ = |〈+|�b〉|2 =

∞∑
n=0

∣∣a0
n

∣∣2
cos2 ϕn+1

P b
− = |〈−|�b〉|2 =

∞∑
n=1

∣∣a0
n−1

∣∣2
sin2 ϕn =

∞∑
n=0

∣∣a0
n

∣∣2
sin2 ϕn+1.

(25)

The summation variables can be shifted because ϕ0 = 0.

Using the trigonometric identities

sin2 ϕ = 1
2 (1 − cos 2ϕ)

cos2 ϕ = 1
2 (1 + cos 2ϕ)

(26)

5



J. Phys. A: Math. Theor. 41 (2008) 075304 B M Garraway and S Stenholm

we obtain the results
P a

± = 1
2 (1 ∓ S(0))

P b
± = 1

2 (1 ± S(1)).
(27)

The sums are given by

S(k) =
∞∑

n=0

∣∣a0
n

∣∣2
cos 2ϕn+k (k = 0, 1). (28)

If we choose the case (a) we may deal with the infinite sum

S = S(0)/N =
√

2

N

∞∑
n=0

cn cos 2gt
√

n, (29)

where we choose

cn =
∣∣a0

n

∣∣2

√
2

(30)

along with a normalization N which will be determined later. In terms of dimensionless
time 2gt, this is very similar to the sum (7) with λν = √

ν. These do not form a sequence
of incommensurate numbers, but we want to investigate the applicability of the result in
section 2.2 to this case. An additional difference is the normalization of the coefficients in the
present case. Instead of (8) the quantum-mechanical normalization of a state vector requires

∞∑
n=0

∣∣a0
n

∣∣2 = 1, (31)

which, because of the connection (30), requires in equation (29) the presence of the
normalization N, i.e. it forces us to rescale the ensuing distribution, vide infra.

We also want to put in an initial photon distribution; one such is given by the coherent
state which we will use in the numerical calculations. It is smooth and extends over several
states; we expect this to be enough to give the random distribution, if such a distribution is
to emerge. We have not carried out a systematic investigation of the dependence of the result
on the initial distribution. The coherent state suffices to establish the existence of the random
distribution even in the case of a sum over square roots instead of one over incommensurate
frequencies only.

2.4. Randomness in the Jaynes–Cummings case

The derivation of the Gaussian distribution in section 2.2 follows from the exact
incommensurability relation (6) and the exact mathematical limit (14). In the Jaynes–
Cummings case neither one can be taken as fully satisfied. It is, however, possible to obtain
the same result utilizing a less rigorous but physically justifiable argument.

Instead of the sum (7) we will deal with the normalized sum (29) with its different
limits (0 to ∞, rather than 1 to n). In a way similar to the derivation of equation (10) from
equation (7), we can obtain a new version of equation (10), but this time the second integral
reads

1

2T

∫ T

−T

dt

∞∏
k=0

exp

[
−i

η
√

2ck

N
cos λkt

]
≡ Et

[ ∞∏
k=0

Kk

]
, (32)

where Et denotes a time average and the Kk represent the exponential terms in the product.
Assuming the frequencies λk to be ‘sufficiently’ different, we surmise that we may take the
average over the individual terms in the product separately. Then for each one of the terms we

6
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obtain

Et [Kk] = Et

[
exp

(
−i

η
√

2ck

N
cos λkt

)]

=
∞∑

ν=0

(−iη
√

2ck/N)2ν

2ν!
Et [cos2ν λkt], (33)

because the odd terms average to zero. Because of the relation [7],

2

π

∫ π/2

0
cos2ν x dx = (2ν)!

22ν (ν!)2 , (34)

equation (33) becomes

Et [Kk] =
∞∑

ν=0

(−η2c2
k

/
2N2

)ν

(ν!)2
= J0

(√
2ηck

N

)

≈
(

1 − η2c2
k

2N2

)
≈ exp

(
−η2c2

k

2N2

)
. (35)

We now introduce the normalization condition

1

N2

∞∑
k=0

c2
k = 1, (36)

which is consistent with equation (8) in the case ck = 1/
√

k,N = 1, 1 � k � n, as n → ∞.
Then equation (32) gives

Et

[ ∞∏
k=0

Kk

]
= exp

(
−η2

2

)
. (37)

As before, the Fourier transform of this gives the normalized probability distribution

p(x) = 1√
2π

exp

(
−1

2
x2

)
. (38)

The derivation above replaces the condition of absolute incommensurability by the more
physically motivated assumption of separate time averages. In the end the results are
equivalent. Also the approximation in (35) may be justified by the normalization (36); if
enough of the many terms differ from zero, and the distribution is reasonably smooth, each
term in the sum must become very small and hence justify the approximation. These arguments
cannot, however, replace the exactness of the Kac model, but suggest that its conclusions may
hold under less stringent requirements. This is what we want to establish in the case of the
Jaynes–Cummings model.

3. Numerical checks

3.1. General considerations and initial state

We consider the asymptotic behaviour of sums of the type

Sn(t) =
√

2

N

n∑
k=0

ck cos λkt, (39)

when n → ∞ and we average the distribution of the values of Sn over an infinite time t → ∞.
The behaviour of this double limit is nontrivial to establish numerically, but the behaviour can
be suggested by certain criteria to be presented below.

7
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In the Kac model, we have the simple relations

ck = 1√
n
, for 1 � k � n,

λk = {incommensurate numbers}.
(40)

The normalization is
n∑

k=1

c2
k = 1 (41)

so that N = 1 in equation (39). The mathematical demonstration for the Kac model in
section 2.2 shows that the resulting distribution should be the Gaussian

p(x) = 1√
2π

exp

(
−x2

2

)
. (42)

That is, the distribution p of the values of Sn obeys

lim
n→∞ p(Sn) = lim

n→∞
1√
2π

exp

(
−S2

n

2

)
→ 1√

2π
exp

(
−S2

2

)
, (43)

where S = S(0)/N as in equation (29). Because this result is shown to be exact, it presents a
test case: if this can be established with a certain numerical confidence, the same confidence
should be indicative of the behaviour of other cases.

Our interest is the Jaynes–Cummings model, where λk ∝ √
k, as may be seen by

comparing the two series (39) and (29). Here, however, the normalization is different and the
sum has an infinite number of terms. The condition arrived at in section 2.4, equation (36),
together with equation (30), ck = |a0

k |2/
√

2, implies the condition

1

2N2

∞∑
k=0

∣∣a0
k

∣∣4 = 1. (44)

It is now clear that, in the Jaynes–Cummings model case, the normalization factor N �= 1 and
it depends on the initial state because of the original quantum-mechanical normalization (31),∑∞

k=0

∣∣a0
k

∣∣2 = 1. Indeed, this normalization, taken together with equation (44), implies that

N < 1/
√

2, since we must have
∑∞

k=0

∣∣a0
k

∣∣4 � 1. This means that, without rescaling the sum
S by the factor N in equation (29), the width of the distribution of the Jaynes–Cummings sum
S(0) would be rather less than unity.

For an initial quantum state we are going to use the coherent state as a reference in our
model. That is, we let∣∣a0

k

∣∣2 = e−n̄ n̄k

k!
, (45)

so that from equation (44) we find

N = exp(−n̄)
√

I0(2n̄)/2 ≈ 1

2(πn̄)1/4
, (46)

where I0 is a modified Bessel function. The approximation in equation (46) holds for large
photon number, n̄  1. The approximate result can also be easily found from

e−n̄ n̄k

k!
≈ 1√

2πn̄
exp

[
− (k − n̄)2

2n̄

]
, (47)

so that

N2 = 1

2

∞∑
k=0

∣∣a0
k

∣∣4 ≈ 1

4πn̄

∫ ∞

−∞
exp

[
− (k − n̄)2

n̄

]
dk = 1

4
√

πn̄
. (48)

8
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For a coherent state with a given n̄, this factor N scales the Gaussian distribution for S to one
expected to have unit width. (See equation (29).)

A restriction on the Jaynes–Cummings model as compared with the Kac model is that
since the probabilities (27) must be less than unity, the scaled sum (39) is limited to the
intervals

|S(t)| � 1

2N
, (49)

as n → ∞. For the coherent state this means that S(t) is bounded by (πn̄)1/4 for large n̄.
Whilst n̄ is finite this will prevent the emergence of a Gaussian to exact precision. The resulting
considerations will be taken into account when the evidence for randomness is evaluated below.

3.2. Numerical tests

3.2.1. Methods. The numerical tests look at the two models (Kac and Jaynes–Cummings)
and in each case the sum Sn(t), equation (39), is evaluated for a large number of sampling
times. For the Kac model ck and λk are given in equation (40). For the incommensurate
numbers in the cosine we use the square roots of consecutive prime numbers starting at 2. For
the Jaynes–Cummings model ck is given by equation (30) and we have λk = √

k where the k
are integers starting at zero. This implies a scaled dimensionless time in the Jaynes–Cummings
model case: 2gt −→ t .

The limit n of the sum (39) is necessarily finite: in the Kac case this is consistent with
the model, in the Jaynes–Cummings model we choose a limit n rather larger than n̄ (actually
2.5 × n̄) to capture the significant contributions to the sum.

The time sampling is regular and is chosen at an incommensurate frequency a little higher
than the highest cosine frequency present in the sum Sn, i.e. for the sampling time interval we
have

�t = 1/λn. (50)

For the Kac model, for example, the results presented in section 3.2.2 involve values of n no
higher than 200, so if the final sampling time is tf = 2×106 we have included up to 70 million
sample times (which start at t = 0). We have checked if there is any difference between the
regular sampling and sampling at random times (up to a limit tf ). With random sampling the
trends, in general, remain the same, though the differences from Gaussian can be larger.

Since the normal distribution (38) has a unit width, one of the statistical tests of the results
is simply to compute the standard deviation σ of the time sampled values of Sn; the results in
the figures (in sections 3.2.2 and 3.2.3) show σ − 1 so that deviations from the expected unit
width are more easily seen.

In order to go beyond simple statistical quantities, we use as a measure of the difference
between the normal distribution (38) and the distribution of sampled values of Sn, the
Kolmogorov–Smirnov distance D as given by the algorithm in [8]. The Kolmogorov–
Smirnov distance D is the maximum distance between the cumulative distributions. For
the ideal distribution (38) the cumulative distribution is simply given by an error function. The
maximum deviation of the sampled data from this error function is given by D and provides a
useful measure of differences over the whole distribution function.

It is also useful to visualize the probability distributions by binning the values of Sn(t)

at the sampled time points. Typically we use Nbin = 600 bins at values xj spread between
±4. The result is normalized to unit probability. The resulting numerical distribution pbin(xj )

is expected to be an approximation to the ideal distribution p(x), as given in equation (38).
The difference between these distributions, pbin(xj ) − p(xj ), is expected to have a scatter,

9
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S(
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t
 1005 1000

Figure 1. (Left frame) For the Kac model case we show typical time sampled points up to a rather
low scaled time t → 2000 to show the features of the time evolution. The number of terms in the
Kac sum S is n = 100. In the later analysis and figures the sum S is sampled to much later times,
up to tf = 2.0 × 106. (Right frame) Shows a narrow window of data from the left frame, with dots
indicating sampled time points and the line indicating the continuous value of the sum S(t).

and to measure this it is useful to define a simple RMS deviation for the absolute values
pbin(xj ) − p(xj ). Thus we define the quantity �P through

�P 2 = 1

Nbin

∑
j=1,Nbin

[p(xj ) − pbin(xj )]
2. (51)

Given that most of the ‘noise’ in pbin(xj ) − p(xj ) is located around the origin it should be
noted that �P is sensitive to the bin limits, so these are kept constant throughout.

3.2.2. Kac model. An example of the time series S for the Kac model is given in figure 1
for the case n = 100. On the long time-scale (left part of figure 1) the data look essentially
chaotic. The largest value of S is at t = 0 when the terms all add to a value of

√
2 × 100 (an

extreme point excluded by the y-range selected in the figure). On a short time-scale, such as
in the narrow region selected on the right of figure 1, it is possible to see a correlation between
successive time points.

In the case of the Kac model, we know from the mathematical proof that the Gaussian
limit for the distribution should emerge accurately. Thus the confidence acquired here may
serve as a test of the power of our numerical method and the reliability of our conclusions.

The claim we investigate is that the emerging distribution is the normalized Gaussian. In
figure 2 both these distributions pbin(x) and p(x) are shown and the fit appears to be very
good. To investigate further, we display the difference in figure 3. When the number of terms
included grows from n = 52 to n = 200, we observe a tendency to shrink the difference. At
best the difference is of the order 10−3, which we consider to be satisfactory.

We have to consider carefully the double limit, n → ∞ and t → ∞. The first thing to
establish is the convergence. To this end we consider the question of whether the raw data
tend to approach the unit width expected; this is the σ -test. In figure 4, the deviation from
unity is shown as function of the averaging time tf . The result is displayed for three different
cut-off values in the sums. The increase of terms decreases the scatter of the points, and for
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Figure 2. The binned distribution pbin(x) for the Kac model (dots) and the reference normal
distribution (38) (shown as a line). In the binned case: tf = 2.0 × 106 and the number of terms
in the series (7) is n = 200 (dots). Only 200 of the 600 bin values are shown in the figure. The
region marked with a rectangle is shown on an expanded scale in the inset.

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

-4 -3 -2 -1  0  1  2  3  4

p b
in

(x
)-

p(
x)

x

Figure 3. Difference between the binned distribution of the Kac model and the normal distribution
(38). The sampling is taken to a final time tf = 2.0 × 106. The number of terms in the sum (7) is:
n = 52 (squares), n = 100 (crosses), n = 200 (circles). The circles appear to show noise, but this
arises from the finite, though large, sampling rather than from numerical error. Only every third
bin is shown.

the largest number (= 200) a steady decrease is convincingly emerging. For the longest time
used (t = 2 × 106) a value near 10−6 has been reached. We are convinced that longer times
would cause this to drop steadily towards zero.

In order to test the validity of the distribution assumed, we bin the numerical data (see
above) and test how well they are represented by the Gaussian. The test is the RMS value.
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Figure 4. For the Kac model we show the statistical width σ (plotted as σ − 1 on a log scale) as a
function of the final time tf (up to tf = 2.0 × 106). The number of terms in the sum (7) is: n = 52
(squares), n = 100 (crosses), n = 200 (circles). The straight line shows a simple fit to the circles
(� 3.0/tf ) to guide the eye.
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Figure 5. For the Kac model we show on a log–log scale the RMS deviation �P between the
binned and model distributions, equation (51), over the bin range and as a function of the final
time tf (up to tf = 2.0 × 106). The number of terms in the sum (7) is: n = 52 (squares), n = 100
(crosses), n = 200 (circles). The straight line shows a power-law fit to the circles to guide the eye.

In figure 5 we see how this is improved with averaging time. For increased number of terms
the convergence is rapidly improved. Figure 6 shows the dependence of the RMS value �P

on the number of terms included. Here we can also clearly see the strong improvement with
increasing averaging time. For the final values, t = 2 × 106 and n = 200, we find a value
<4 × 10−4.

A standard test of the validity of a given distribution to describe a set of data is the
Kolmogorov–Smirnov (K–S) value D. The K–S distance is shown for the Gaussian compared
to the Kac model as function of time in figure 7. The figure shows that for a given n a non-zero
limiting value is established for a sufficient number of time samples, i.e. for large enough tf .
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Figure 6. The RMS deviation �P , equation (51), between the binned (Kac) and model distributions
over the bin range and as a function of the number of terms n in the sum (7) (from 44 to 200). The
final time is: tf = 0.5 × 106 (squares), tf = 1.0 × 106 (crosses), tf = 2.0 × 106 (circles). The
plot is on a log scale and the straight line shows a power-law fit to the circles to guide the eye.
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Figure 7. For the Kac model data and the model distribution (38) we show the Kolmogorov–
Smirnov distance D between the respective cumulative distributions. This is seen on a log–log
scale and as a function of the final time tf (up to tf = 2.0 × 106). The number of terms in the sum
(7) is: n = 52 (squares), n = 100 (crosses), n = 200 (circles).

This suggests strongly that for finite n there is a difference between the two distributions. The
finite limiting value, as a function of tf , can be understood because once there are enough
data to establish the small difference between the distributions, additional sampling will not
change the K–S result significantly. In addition, we note that the limiting value reduces as the
number of terms n increases. This is seen for the three sets of data in figure 7, and also in
figure 8, which gives the dependence on n for several large values of tf . These results support
the contention that the asymptotic behaviour has been reached. The confidence limit reached
is of the order 2 × 10−4.
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Figure 8. For the Kac model we see on a log–log scale the Kolmogorov–Smirnov distance D
between the cumulative distributions as a function of the number of terms n in the sum (7) (from
44 to 200). The final time is: tf = 0.5 × 106 (squares), tf = 1.0 × 106 (crosses), tf = 2.0 × 106

(circles). The straight line shows a power-law fit to the circles to guide the eye.
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Figure 9. For the Jaynes–Cummings model case we show typical time sampled points of the sum
S as in figure 1. The coherent state is chosen with n̄ = 100. As in figure 1 the right frame shows
a narrow window taken from the left frame with dots indicating sampled time points and the line
indicating the continuous value of the sum S(t) in the Jaynes–Cummings case.

The numerical investigations of the Kac model suggest that our approach can verify the
Gaussian conclusion to an accuracy of order 10−4. For the rest of this investigation, we assume
this to be a satisfactory level of confidence in our result.

3.2.3. The Jaynes–Cummings model. An example of the time series S(t) is seen in figure 9
for the Jaynes–Cummings model case with an initial coherent state with an average of
100 photons. On a long time-scale (left part of figure) the time sampled points demonstrate
the collapse and revival features first reported in [9]. The revivals appear periodically, but
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Figure 10. For the Jaynes–Cummings model case we show the difference between the binned
distribution and the normal distribution (38) as in figure 3 for the Kac model. The final sample
time is tf = 2.0 × 106. The mean number of photons is: n̄ = 25 (squares), n̄ = 50 (crosses),
n̄ = 100 (circles). Only every third bin is shown.
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Figure 11. The statistical width σ (shown as σ − 1) for the Jaynes–Cummings model case. The
final sample time tf is shown on a log scale (up to tf = 2.0 × 106). The initial coherent state has
a mean number of photons n̄ = 25 (squares), n̄ = 50 (crosses) and n̄ = 100 (circles).

they broaden and eventually they merge and a more chaotic looking region appears which is
reminiscent of the Kac model case seen in figure 1. However, as in the Kac model, there are
correlations on a short time-scale, as can be seen in the right part of figure 9.

Next we need to investigate the conjecture that even in the Jaynes–Cummings case the
time averaged occurrence of a value is asymptotically producing a Gaussian distribution.
In this case the time evolution is determined by a Hamiltonian, and there are essentially
two questions: do we find a Gaussian distribution, and is this really the genuine asymptotic
distribution? We will suggest answers to both queries by utilizing the methods applied to the
Kac model.
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Figure 12. For the Jaynes–Cummings model we show the statistical width σ (shown as σ − 1) as
a function of the mean photon number n̄ (from 10 to 100 on a log scale). The final sample time is:
tf = 0.5 × 106 (squares), tf = 1.0 × 106 (crosses), tf = 2.0 × 106 (circles).
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Figure 13. For the Jaynes–Cummings model case we show the RMS deviation �P between the
binned and model distributions over the bin range. The final time tf is seen on a log scale (up to
tf = 2.0 × 106). The average photon number of the initial coherent state is n̄ = 25 (squares),
n̄ = 50 (crosses), n̄ = 100 (circles).

The fit to the Gaussian is tested in figure 10. The deviations are of the same order as for
the Kac model in figure 3. The spread σ , as a function of time, is shown in figure 11. The
improvement with the increased number of terms is clear and settles down as the number of
time samples increases with final time tf . For the longest time used, 2 × 106, the dispersion
differs by much less than 10−5. The spread σ is seen as a function of n̄ in figure 12 for
selected times tf . At each of these times this figure does not seem to indicate any convergence
with increasing n̄. This derives from the fact that because of the deterministic time evolution,
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Figure 14. For the Jaynes–Cummings model case we show the RMS deviation �P between the
binned and model distributions over the bin range and as a function of the mean photon number
n̄ (from 10 to 100 on a log–log scale). The final sample time is: tf = 0.5 × 106 (squares),
tf = 1.0 × 106 (crosses), tf = 2.0 × 106 (circles). The straight line shows a power-law fit to the
circles to guide the eye.
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Figure 15. For the Jaynes–Cummings model case we show on a log–log scale the Kolmogorov–
Smirnov distance D between the cumulative distributions as a function of the final time tf (up
to tf = 2.0 × 106). The mean photon number is n̄ = 25 (squares), n̄ = 50 (crosses), n̄ = 100
(circles).

the value of σ − 1 depends strongly on the final time tf in the evaluation of the averages.
Staying at the level 10−6, the result fluctuates deterministically. This is discussed further in
the appendix. Binning the numerical data and comparing to the Gaussian, we find the RMS
averages in figure 13, where the convergence with the number of terms is clearly seen. The
dependence on n̄ is shown in figure 14. The values at large n̄ indicate an agreement to order
∼10−3, which is one order of magnitude worse than in the Kac model. However, the averaged
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Figure 16. For the Jaynes–Cummings model case we show on a log–log scale the Kolmogorov–
Smirnov distance D between the cumulative distributions as a function of the mean photon number
n̄ (from 10 to 100). The final sample time is: tf = 0.5 × 106 (squares), tf = 1.0 × 106 (crosses),
tf = 2.0 × 106 (circles). The straight line shows a power-law fit to the circles.

deviations in figures 13 and 14 demonstrate the convergence in a more convincing manner
than in figure 12.

The validity of the Gaussian distribution is again tested by the K–S distance. The result as
a function of averaging time is shown in figure 15 and shows convergence to a finite value for
the final time selected, as seen in the Kac model (figure 7). The improvement with increasing
n̄ is displayed in figure 16. Again an accuracy of order 10−3 is found as n̄ → 100.

4. Conclusions

We have found that our numerical methods verify the Gaussian proposition to within an
accuracy of the order 10−4 in the case of the Kac model. Both the convergence of the raw data
and the numerical binning support this conclusion. We also conclude that convergence with
respect to increasing averaging time is reached in the calculations.

For the Jaynes–Cummings model, the calculations suggest that the data are convincingly
described by a Gaussian distribution. Considering both the time convergence, figures 11 and
13, and the convergence with increasing n̄, figures 12 and 14, we see that the limit has been
reached. As n̄ increases we note that in effect the number of contributory terms to the sum
(39) increases. The confidence of the Gaussian assignment for the Kac model is measured by
the K–S distance. This is of order 10−4, as seen in figures 7 and 8. For the Jaynes–Cummings
model the corresponding number is one order of magnitude worse, 10−3 in figures 15 and
16. The question arises, whether this is a numerical accident or mirrors a deviation from the
Gaussian proposed.

The fact that there is a limiting distribution is strongly suggested by the data and the
tests. However, this distribution may be only approximately a Gaussian. That this is the
case may be suggested from two of the properties of the Jaynes–Cummings model. Firstly,
as mentioned in section 3.1, the expectation value of a Pauli spin variable is restricted to
the interval [−1, 1]. This prevents the wings of the distribution from being accurately
described. An effect expected is that, for finite n̄, there may occur more probability
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in the wings than the Gaussian suggests. However, as n̄ increases, the normalization N
reduces (see equation (46)) and therefore the bound of 1/(2N) on the scaled sum S increases
(equation (49)). As a result it is possible for the probability distribution to match increasingly
closely a Gaussian as n̄ increases.

A second property is obtainable from the known time evolution of the model. The
recurrences have envelopes which tend to accumulate occurrences near their turning points.
This tends to add weight at each flank of the distribution with an accompanying depletion of
weight at the peak of the distribution.

We get some support for the existence of a difference by comparing the accuracy of the
Jaynes–Cummings fit in figure 10 to the corresponding one for the Kac model in figure 3. In
the latter case, the deviation appears to represent a good deal of numerical noise. Increasing
the number of terms shows steady improvement in the accuracy of the fit. On the other
hand, in figure 10 there is a clear trend visible; the number of terms is seen to decrease the
scatter and the data seem to converge towards a more well-defined behaviour with diminishing
magnitude. This does indeed give too much weight to the flanks and too little at the centre and
this supports the contention that the limiting distribution is close to a Gaussian but given in part
by a different distribution. The same trend may be tested from the RMS fit to the Gaussian.
Both in the Kac model, figure 5, and to a lesser extent in the Jaynes–Cummings model,
figure 13, the fidelity consistently improves when the data are extended. The K–S tests,
figures 7 and 15, also behave in similar ways to each other. They converge to definite values,
which is presumed to give an objective measure of the deviations between the data and the
proposed distribution. These figures also show the importance of choosing a sufficiently large
time tf as n (or n̄) is increased. Considering the numerical evidence, we see no clear indication
of the emergence of an asymptotic distribution differing from the Gaussian since figures 8 and
16, show consistent improvement as n, and n̄ increase, respectively.

In conclusion we repeat our contention that the Jaynes–Cummings time evolution shows a
random Gaussian value distribution of its ensuing expectation values. To prove this numerically
is a demanding endeavour, which we have tested on the Kac model where randomness is
mathematically provable. We have also tried to consider honestly the possible sources of
deviations from the Gaussian distribution. In spite of lingering uncertainties, we believe that
the Gaussian distribution has been established beyond reasonable doubt. In any case, we feel
that the results are, in their own right, interesting enough to suggest that randomness may
emerge even from totally deterministic quantum dynamical evolution.
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Appendix

One quantity we are interested in is the standard deviation σ given by

σ 2 = S2(t) − [S(t)]2, (A.1)

where the time averaging is, in the numerical work, performed by periodic sampling. To
determine this explicitly in the periodic sampling case we can write

t = k · �t, (A.2)

where �t is the sampling interval, equation (50), and k is an integer, which will run from 0 to
ns − 1 so that ns is the number of time samples. Thus the final time tf is given by
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tf = (ns − 1)�t. (A.3)

For the moment we focus on S2(t) and using equation (29) for the sum S we can explicitly
write

S2(t) = 1

ns

ns−1∑
k=0

2

N2

∞∑
m,n=0

cmcn cos(2gt
√

m) cos(2gt
√

n). (A.4)

Then we exchange the order of the summations and expand the cosines as exponentials so that

S2(t) = 1

2N2ns

∞∑
m,n=0

cmcn

ns−1∑
k=0

{
eiθ+

m,nk + eiθ−
m,nk + c.c.

}
(A.5)

where, for shorthand we define

θ±
m,n = θm ± θn, θm = 2g�t

√
m. (A.6)

Then, because this is periodic sampling we can perform the time average, i.e. the sum over k.
For the pairs of terms we can use:

ns−1∑
k=0

{eiθ±
m,nk + c.c.} = 2

cos
[
(ns − 1)θ±

m,n

/
2
]

sin
(
nsθ

±
m,n

/
2
)

sin
(
θ±
m,n

/
2
) . (A.7)

Now we introduce a function F(n, θ) such that

F(n, θ) = cos[(n − 1)θ/2] sin(nθ/2)

n sin(θ/2)
= 1

2n

[
1 +

sin [(n − 1/2)θ ]

sin (θ/2)

]
, (A.8)

and then

S2(t) = 1

N2

∞∑
m,n=0

cmcn

[
F

(
ns, θ

+
m,n

)
+ F(ns, θ

−
m,n)

]
. (A.9)

A similar, but simpler argument, shows that for the first moment

S(t) = 1

ns

ns−1∑
k=0

√
2

N

∞∑
m=0

cm cos(2gt
√

m) =
√

2

N

∞∑
m=0

cmF(ns, θm). (A.10)

In both cases the same function F(n, θ) appears. The function has some similarity to those
appearing in the theory of n-slit diffraction. It has regular peaks and a maximum value of
unity when the argument θ is a multiple of 2π .

In the regime of modestly large n̄ and very large numbers of samples ns , equations (A.9)
and (A.10) provide a faster method of evaluating the standard deviation σ on a computer
compared to direct averaging of the sum S. In doing so, we still assume that the scaling, or
normalization, N is given by equation (44), i.e. N2 = ∑

c2
n. Figure 17 shows, for an initial

coherent state, both the data points of figure 12 (at the largest tf ) and a line for σ − 1 found
from equations (A.9) and (A.10). We can also test the effect of increasing the density of
time sampling here. Instead of equation (50), we can let �t = ε/λn, so that by reducing ε

from unity, a higher density of time sampling is achieved. Of course, from equation (A.3),
the final time tf would shrink unless the number of samples ns is increased correspondingly.
In figure 17 we see that increasing the density of sampling by a factor of a hundred only
introduces a modest change in σ . Further increases would not result in any change visible in
the figure. (Note that a decrease in sampling density would produce a significant change in
σ .) We also note that for ε = 1 there is a small discrepancy between the solid line and the dots
near n̄ = 38. However, this is simply because integer values of ns are used for the data points
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Figure 17. For the Jaynes–Cummings model we show the statistical width σ (shown as σ − 1)
as a function of the mean photon number n̄ (from 10 to 100 on a log scale). The final sample
time is tf = 2.0 × 106 and the circles present the data from figure 12. The solid and dotted lines
are derived from equations (A.9) and (A.10). The interval between sample points is given by
�t = ε/λn with ε = 1 (solid line) and ε = 10−2 (dotted line).

marked with circles (as in figure 12), whereas, to make a smoother line, continuous values of
ns are allowed for the lines in figure 17.

For the limits of interest, θ � 1, nθ  1 (and gtf  √
n̄  1), and an initial coherent

state it is straightforward to see that in S2(t), equation (A.9), the term F(ns, θ
+
m,n) contributes

vanishingly for large ns (and n̄). Then the main contribution to S2(t) is unity from the
F(ns, θ

−
m,n) term when m = n. When m �= n it is not clear that the contributions to S2(t)

converge to zero as a function of n̄ (as in figure 17). This is because, although the denominator
of F is slowly varying in our limits, the numerator varies rapidly, i.e. changes dramatically
from point to point (m, n). Nevertheless, convergence does take place as a function of ns . The
convergence to zero of equation (A.10) can also be established as a function of ns , and thus
we expect that σ converges to unity in these limits. The convergence with ns is confirmed in
figure 11 where increasing tf , at fixed n̄, implies increasing ns with �t fixed.

Figure 17 shows that σ is not especially sensitive to the sampling interval �t , as discussed
above. It is also not especially sensitive to the inevitable cut-off in the infinite sums over m
(and n). At the expense of increased computation time we can increase this cut-off from, say,
2.5n̄ to 5n̄ with only a very small change in the results. However, σ − 1 is sensitive to the
selected final time tf , i.e. to the number of time samples ns . (As already remarked, this lies
behind the small difference between the circles and solid line in figure 17.) Needless to say, if
we change from periodic sampling to random time sampling, whilst most of the trends seen in
this paper remain very similar, the result for σ − 1 does change, since it loses its deterministic
behaviour and increases in its range of values.
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